Jermey's profile image

Books about Black Holes

14 Books | by Jermey Matthews

In honor of the first direct imaging of a black hole, announced on 10 April, 2019, here is a list of general audience books about black holes.
A Brief History of Time

A Brief History of Time

Stephen W. Hawking

An anniversary edition of a now-classic survey of the origin and nature of the universe features a new introduction by the author and a new chapter on the possibility of time travel and "wormholes" in space
The Little Book of Black Holes

The Little Book of Black Holes

Steven S. Gubser, Frans Pretorius

Dive into a mind-bending exploration of the physics of black holes Black holes, predicted by Albert Einstein’s general theory of relativity more than a century ago, have long intrigued scientists and the public with their bizarre and fantastical properties. Although Einstein understood that black holes were mathematical solutions to his equations, he never accepted their physical reality—a viewpoint many shared. This all changed in the 1960s and 1970s, when a deeper conceptual understanding of black holes developed just as new observations revealed the existence of quasars and X-ray binary star systems, whose mysterious properties could be explained by the presence of black holes. Black holes have since been the subject of intense research—and the physics governing how they behave and affect their surroundings is stranger and more mind-bending than any fiction. After introducing the basics of the special and general theories of relativity, this book describes black holes both as astrophysical objects and theoretical “laboratories” in which physicists can test their understanding of gravitational, quantum, and thermal physics. From Schwarzschild black holes to rotating and colliding black holes, and from gravitational radiation to Hawking radiation and information loss, Steven Gubser and Frans Pretorius use creative thought experiments and analogies to explain their subject accessibly. They also describe the decades-long quest to observe the universe in gravitational waves, which recently resulted in the LIGO observatories’ detection of the distinctive gravitational wave “chirp” of two colliding black holes—the first direct observation of black holes’ existence. The Little Book of Black Holes takes readers deep into the mysterious heart of the subject, offering rare clarity of insight into the physics that makes black holes simple yet destructive manifestations of geometric destiny.
Black Hole Blues

Black Hole Blues

Janna Levin

"In 1916, Einstein became the first to predict the existence of gravitational waves: sounds without a material medium generated by the unfathomably energy-producing collision of black holes. Now, Janna Levin, herself an astrophysicist, recounts the story of the search, over the last fifty years, for these elusive waves--a quest that has culminated in the creation of the most expensive project ever funded by the National Science Foundation ($1 billion-plus). She makes clear the how the waves are created in the cosmic collision of black holes, and why the waves can never be detected by telescope. And, most revealingly, she delves into the lives and fates of the four scientists currently engaged in--and obsessed with--discerning this soundtrack of the universe's history. Levin's account of the surprises, disappointments, achievements, and risks of this unfolding story provides us with a uniquely compelling and intimate portrait of the people and processes of modern science"--
The Black Hole War

The Black Hole War

Leonard Susskind

What happens when something is sucked into a black hole? Does it disappear? Three decades ago, a young physicist named Stephen Hawking claimed it did-and in doing so put at risk everything we know about physics and the fundamental laws of the universe. Most scientists didn't recognize the import of Hawking's claims, but Leonard Susskind and Gerard t'Hooft realized the threat, and responded with a counterattack that changed the course of physics. THE BLACK HOLE WAR is the thrilling story of their united effort to reconcile Hawking's revolutionary theories of black holes with their own sense of reality-effort that would eventually result in Hawking admitting he was wrong, paying up, and Susskind and t'Hooft realizing that our world is a hologram projected from the outer boundaries of space. A brilliant book about modern physics, quantum mechanics, the fate of stars and the deep mysteries of black holes, Leonard Susskind's account of the Black Hole War is mind-bending and exhilarating reading.
Gravity's Fatal Attraction

Gravity's Fatal Attraction

Mitchell Begelman, Martin Rees

Richly illustrated with the images from observatories on the ground and in space, and computer simulations, this book shows how black holes were discovered, and discusses our current understanding of their role in cosmic evolution. This second edition covers new discoveries made in the past decade, including definitive proof of a black hole at the center of the Milky Way, evidence that the expansion of the Universe is accelerating, and the new appreciation of the connection between black holes and galaxy formation. There are entirely new chapters on gamma-ray bursts and cosmic feedback. Begelman and Rees blend theoretical arguments with observational results to demonstrate how both approaches contributed to this subject. Clear illustrations and photographs reveal the strange and amazing workings of our universe. The engaging style makes this book suitable for introductory undergraduate courses, amateur astronomers, and all readers interested in astronomy and physics.
Cracking the Einstein Code

Cracking the Einstein Code

Fulvio Melia

Albert Einstein’s theory of general relativity describes the effect of gravitation on the shape of space and the flow of time. But for more than four decades after its publication, the theory remained largely a curiosity for scientists; however accurate it seemed, Einstein’s mathematical code—represented by six interlocking equations—was one of the most difficult to crack in all of science. That is, until a twenty-nine-year-old Cambridge graduate solved the great riddle in 1963. Roy Kerr’s solution emerged coincidentally with the discovery of black holes that same year and provided fertile testing ground—at long last—for general relativity. Today, scientists routinely cite the Kerr solution, but even among specialists, few know the story of how Kerr cracked Einstein’s code. Fulvio Melia here offers an eyewitness account of the events leading up to Kerr’s great discovery. Cracking the Einstein Code vividly describes how luminaries such as Karl Schwarzschild, David Hilbert, and Emmy Noether set the stage for the Kerr solution; how Kerr came to make his breakthrough; and how scientists such as Roger Penrose, Kip Thorne, and Stephen Hawking used the accomplishment to refine and expand modern astronomy and physics. Today more than 300 million supermassive black holes are suspected of anchoring their host galaxies across the cosmos, and the Kerr solution is what astronomers and astrophysicists use to describe much of their behavior. By unmasking the history behind the search for a real world solution to Einstein’s field equations, Melia offers a first-hand account of an important but untold story. Sometimes dramatic, often exhilarating, but always attuned to the human element, Cracking the Einstein Code is ultimately a showcase of how important science gets done.
Einstein's Unfinished Symphony

Einstein's Unfinished Symphony

Marcia Bartusiak

Traces ongoing efforts by scientific observers throughout the world to detect gravitational waves, infinitesimal quakes that could significantly expand on what is known about the universe today. Reprint.
Black Holes and Time Warps

Black Holes and Time Warps

Kip S. Thorne, Kip Thorne

Examines such phenomena as black holes, wormholes, singularities, gravitational waves, and time machines, exploring the fundamental principles that control the universe.
Black Hole

Black Hole

Marcia Bartusiak

"For more than half a century, physicists and astronomers engaged in heated dispute over the possibility of black holes in the universe. The weirdly alien notion of a space-time abyss from which nothing escapes—not even light—seemed to confound all logic. This engrossing book tells the story of the fierce black hole debates and the contributions of Einstein and Hawking and other leading thinkers who completely altered our view of the universe. Renowned science writer Marcia Bartusiak shows how the black hole helped revive Einstein's greatest achievement, the general theory of relativity, after decades during which it had been pushed into the shadows. Not until astronomers discovered such surprising new phenomena as neutron stars and black holes did the once-sedate universe transform into an Einsteinian cosmos, filled with sources of titanic energy that can be understood only in the light of relativity. This book celebrates the hundredth anniversary of general relativity, uncovers how the black hole really got its name, and recounts the scientists' frustrating, exhilarating, and at times humorous battles over the acceptance of one of history's most dazzling ideas. "
Death by Black Hole: And Other Cosmic Quandaries

Death by Black Hole: And Other Cosmic Quandaries

Neil deGrasse Tyson

“[Tyson] tackles a great range of subjects . . . with great humor, humility, and—most important— humanity.” —Entertainment Weekly Loyal readers of the monthly "Universe" essays in Natural History magazine have long recognized Neil deGrasse Tyson's talent for guiding them through the mysteries of the cosmos with clarity and enthusiasm. Bringing together more than forty of Tyson's favorite essays, ?Death by Black Hole? explores a myriad of cosmic topics, from what it would be like to be inside a black hole to the movie industry's feeble efforts to get its night skies right. One of America's best-known astrophysicists, Tyson is a natural teacher who simplifies the complexities of astrophysics while sharing his infectious fascination for our universe.
Black Holes, Wormholes and Time Machines

Black Holes, Wormholes and Time Machines

Jim Al-Khalili

Do you know: What might happen if you fall into a black hole? That the Universe does not have an edge? That the reason it gets dark at night is proof of the Big Bang? That cosmic particles time-travel through the atmosphere defying death? That our past, present and future might all coexist "out there"? With two remarkable ideas, Albert Einstein revolutionized our view of the Universe. His first was that nothing can travel faster than light-the ultimate speed limit. This simple fact leads to the unavoidable conclusion that space and time must be linked together forever as Spacetime. With his second monumental insight, Einstein showed how Spacetime is warped and stretched by the gravity of all objects in the Universe and even punctured by black holes. But such possible twisting of Spacetime allowed a magic not even Einstein could have imagined: time-travel. Theoretical physicist Jim Al-Khalili finally lays science fiction to rest as he opens up Einstein's Universe. Leading us gently and light-heartedly through the dizzying world of our space and time, he even gives us the recipe for a time machine, capable of taking us Back to the Future, to Alice's Wonderland, or on a trip with the Terminator.
Einstein's Monsters: The Life and Times of Black Holes

Einstein's Monsters: The Life and Times of Black Holes

Chris Impey

The astonishing science of black holes and their role in understanding the history and future of our universe. Black holes are the most extreme objects in the universe, and yet they are ubiquitous. Every massive star leaves behind a black hole when it dies, and every galaxy harbors a supermassive black hole at its center. Frighteningly enigmatic, these dark giants continue to astound even the scientists who spend their careers studying them. Which came first, the galaxy or its central black hole? What happens if you travel into one—instant death or something weirder? And, perhaps most important, how can we ever know anything for sure about black holes when they destroy information by their very nature? In Einstein’s Monsters, distinguished astronomer Chris Impey takes readers on an exploration of these and other questions at the cutting edge of astrophysics, as well as the history of black holes’ role in theoretical physics—from confirming Einstein’s equations for general relativity to testing string theory. He blends this history with a poignant account of the phenomena scientists have witnessed while observing black holes: stars swarming like bees around the center of our galaxy; black holes performing gravitational waltzes with visible stars; the cymbal clash of two black holes colliding, releasing ripples in space-time. Clear, compelling, and profound, Einstein’s Monsters reveals how our comprehension of black holes is intrinsically linked to how we make sense of the universe and our place within it. From the small questions to the big ones—from the tiniest particles to the nature of space-time itself—black holes might be the key to a deeper understanding of the cosmos.
Black Holes

Black Holes

Clifford A. Pickover

BLACK HOLES A TRAVELER'S GUIDE Clifford Pickover's inventive and entertaining excursion beyond the curves of space and time. "I've enjoyed Clifford Pickover's earlier books . . . now he has ventured into the exploration of black holes. All would-be tourists are strongly advised to read his traveler's guide." -Arthur C. Clarke. "Many books have been written about black holes, but none surpass this one in arousing emotions of awe and wonder towards the mysterious structure of the universe." -Martin Gardner. "Bucky Fuller thought big. Arthur C. Clarke thinks big, but Cliff Pickover outdoes them both." -Wired. "The book is fun, zany, in-your-face, and refreshingly addictive." -Times Higher Education Supplement.
Gravity's Engines

Gravity's Engines

Caleb Scharf

One of The Barnes and Noble Review Editors' Picks: Best Nonfiction of 2012 Selected by The Christian Science Monitor as one of "21 smart nonfiction titles we think you'll enjoy this summer" Selected by The New Scientist as one of 10 books to look out for in 2012 We've long understood black holes to be the points at which the universe as we know it comes to an end. Often billions of times more massive than the Sun, they lurk in the inner sanctum of almost every galaxy of stars in the universe. They're mysterious chasms so destructive and unforgiving that not even light can escape their deadly wrath. Recent research, however, has led to a cascade of new discoveries that have revealed an entirely different side to black holes. As the astrophysicist Caleb Scharf reveals in Gravity's Engines, these chasms in space-time don't just vacuum up everything that comes near them; they also spit out huge beams and clouds of matter. Black holes blow bubbles. With clarity and keen intellect, Scharf masterfully explains how these bubbles profoundly rearrange the cosmos around them. Engaging with our deepest questions about the universe, he takes us on an intimate journey through the endlessly colorful place we call our galaxy and reminds us that the Milky Way sits in a special place in the cosmic zoo—a "sweet spot" of properties. Is it coincidental that we find ourselves here at this place and time? Could there be a deeper connection between the nature of black holes and their role in the universe and the phenomenon of life? We are, after all, made of the stuff of stars.
A Brief History of Time

A Brief History of Time

Stephen W. Hawking

An anniversary edition of a now-classic survey of the origin and nature of the universe features a new introduction by the author and a new chapter on the possibility of time travel and "wormholes" in space
Black Holes and Time Warps

Black Holes and Time Warps

Kip S. Thorne, Kip Thorne

Examines such phenomena as black holes, wormholes, singularities, gravitational waves, and time machines, exploring the fundamental principles that control the universe.
The Little Book of Black Holes

The Little Book of Black Holes

Steven S. Gubser, Frans Pretorius

Dive into a mind-bending exploration of the physics of black holes Black holes, predicted by Albert Einstein’s general theory of relativity more than a century ago, have long intrigued scientists and the public with their bizarre and fantastical properties. Although Einstein understood that black holes were mathematical solutions to his equations, he never accepted their physical reality—a viewpoint many shared. This all changed in the 1960s and 1970s, when a deeper conceptual understanding of black holes developed just as new observations revealed the existence of quasars and X-ray binary star systems, whose mysterious properties could be explained by the presence of black holes. Black holes have since been the subject of intense research—and the physics governing how they behave and affect their surroundings is stranger and more mind-bending than any fiction. After introducing the basics of the special and general theories of relativity, this book describes black holes both as astrophysical objects and theoretical “laboratories” in which physicists can test their understanding of gravitational, quantum, and thermal physics. From Schwarzschild black holes to rotating and colliding black holes, and from gravitational radiation to Hawking radiation and information loss, Steven Gubser and Frans Pretorius use creative thought experiments and analogies to explain their subject accessibly. They also describe the decades-long quest to observe the universe in gravitational waves, which recently resulted in the LIGO observatories’ detection of the distinctive gravitational wave “chirp” of two colliding black holes—the first direct observation of black holes’ existence. The Little Book of Black Holes takes readers deep into the mysterious heart of the subject, offering rare clarity of insight into the physics that makes black holes simple yet destructive manifestations of geometric destiny.
Black Hole

Black Hole

Marcia Bartusiak

"For more than half a century, physicists and astronomers engaged in heated dispute over the possibility of black holes in the universe. The weirdly alien notion of a space-time abyss from which nothing escapes—not even light—seemed to confound all logic. This engrossing book tells the story of the fierce black hole debates and the contributions of Einstein and Hawking and other leading thinkers who completely altered our view of the universe. Renowned science writer Marcia Bartusiak shows how the black hole helped revive Einstein's greatest achievement, the general theory of relativity, after decades during which it had been pushed into the shadows. Not until astronomers discovered such surprising new phenomena as neutron stars and black holes did the once-sedate universe transform into an Einsteinian cosmos, filled with sources of titanic energy that can be understood only in the light of relativity. This book celebrates the hundredth anniversary of general relativity, uncovers how the black hole really got its name, and recounts the scientists' frustrating, exhilarating, and at times humorous battles over the acceptance of one of history's most dazzling ideas. "
Black Hole Blues

Black Hole Blues

Janna Levin

"In 1916, Einstein became the first to predict the existence of gravitational waves: sounds without a material medium generated by the unfathomably energy-producing collision of black holes. Now, Janna Levin, herself an astrophysicist, recounts the story of the search, over the last fifty years, for these elusive waves--a quest that has culminated in the creation of the most expensive project ever funded by the National Science Foundation ($1 billion-plus). She makes clear the how the waves are created in the cosmic collision of black holes, and why the waves can never be detected by telescope. And, most revealingly, she delves into the lives and fates of the four scientists currently engaged in--and obsessed with--discerning this soundtrack of the universe's history. Levin's account of the surprises, disappointments, achievements, and risks of this unfolding story provides us with a uniquely compelling and intimate portrait of the people and processes of modern science"--
Death by Black Hole: And Other Cosmic Quandaries

Death by Black Hole: And Other Cosmic Quandaries

Neil deGrasse Tyson

“[Tyson] tackles a great range of subjects . . . with great humor, humility, and—most important— humanity.” —Entertainment Weekly Loyal readers of the monthly "Universe" essays in Natural History magazine have long recognized Neil deGrasse Tyson's talent for guiding them through the mysteries of the cosmos with clarity and enthusiasm. Bringing together more than forty of Tyson's favorite essays, ?Death by Black Hole? explores a myriad of cosmic topics, from what it would be like to be inside a black hole to the movie industry's feeble efforts to get its night skies right. One of America's best-known astrophysicists, Tyson is a natural teacher who simplifies the complexities of astrophysics while sharing his infectious fascination for our universe.
The Black Hole War

The Black Hole War

Leonard Susskind

What happens when something is sucked into a black hole? Does it disappear? Three decades ago, a young physicist named Stephen Hawking claimed it did-and in doing so put at risk everything we know about physics and the fundamental laws of the universe. Most scientists didn't recognize the import of Hawking's claims, but Leonard Susskind and Gerard t'Hooft realized the threat, and responded with a counterattack that changed the course of physics. THE BLACK HOLE WAR is the thrilling story of their united effort to reconcile Hawking's revolutionary theories of black holes with their own sense of reality-effort that would eventually result in Hawking admitting he was wrong, paying up, and Susskind and t'Hooft realizing that our world is a hologram projected from the outer boundaries of space. A brilliant book about modern physics, quantum mechanics, the fate of stars and the deep mysteries of black holes, Leonard Susskind's account of the Black Hole War is mind-bending and exhilarating reading.
Black Holes, Wormholes and Time Machines

Black Holes, Wormholes and Time Machines

Jim Al-Khalili

Do you know: What might happen if you fall into a black hole? That the Universe does not have an edge? That the reason it gets dark at night is proof of the Big Bang? That cosmic particles time-travel through the atmosphere defying death? That our past, present and future might all coexist "out there"? With two remarkable ideas, Albert Einstein revolutionized our view of the Universe. His first was that nothing can travel faster than light-the ultimate speed limit. This simple fact leads to the unavoidable conclusion that space and time must be linked together forever as Spacetime. With his second monumental insight, Einstein showed how Spacetime is warped and stretched by the gravity of all objects in the Universe and even punctured by black holes. But such possible twisting of Spacetime allowed a magic not even Einstein could have imagined: time-travel. Theoretical physicist Jim Al-Khalili finally lays science fiction to rest as he opens up Einstein's Universe. Leading us gently and light-heartedly through the dizzying world of our space and time, he even gives us the recipe for a time machine, capable of taking us Back to the Future, to Alice's Wonderland, or on a trip with the Terminator.
Gravity's Fatal Attraction

Gravity's Fatal Attraction

Mitchell Begelman, Martin Rees

Richly illustrated with the images from observatories on the ground and in space, and computer simulations, this book shows how black holes were discovered, and discusses our current understanding of their role in cosmic evolution. This second edition covers new discoveries made in the past decade, including definitive proof of a black hole at the center of the Milky Way, evidence that the expansion of the Universe is accelerating, and the new appreciation of the connection between black holes and galaxy formation. There are entirely new chapters on gamma-ray bursts and cosmic feedback. Begelman and Rees blend theoretical arguments with observational results to demonstrate how both approaches contributed to this subject. Clear illustrations and photographs reveal the strange and amazing workings of our universe. The engaging style makes this book suitable for introductory undergraduate courses, amateur astronomers, and all readers interested in astronomy and physics.
Einstein's Monsters: The Life and Times of Black Holes

Einstein's Monsters: The Life and Times of Black Holes

Chris Impey

The astonishing science of black holes and their role in understanding the history and future of our universe. Black holes are the most extreme objects in the universe, and yet they are ubiquitous. Every massive star leaves behind a black hole when it dies, and every galaxy harbors a supermassive black hole at its center. Frighteningly enigmatic, these dark giants continue to astound even the scientists who spend their careers studying them. Which came first, the galaxy or its central black hole? What happens if you travel into one—instant death or something weirder? And, perhaps most important, how can we ever know anything for sure about black holes when they destroy information by their very nature? In Einstein’s Monsters, distinguished astronomer Chris Impey takes readers on an exploration of these and other questions at the cutting edge of astrophysics, as well as the history of black holes’ role in theoretical physics—from confirming Einstein’s equations for general relativity to testing string theory. He blends this history with a poignant account of the phenomena scientists have witnessed while observing black holes: stars swarming like bees around the center of our galaxy; black holes performing gravitational waltzes with visible stars; the cymbal clash of two black holes colliding, releasing ripples in space-time. Clear, compelling, and profound, Einstein’s Monsters reveals how our comprehension of black holes is intrinsically linked to how we make sense of the universe and our place within it. From the small questions to the big ones—from the tiniest particles to the nature of space-time itself—black holes might be the key to a deeper understanding of the cosmos.
Cracking the Einstein Code

Cracking the Einstein Code

Fulvio Melia

Albert Einstein’s theory of general relativity describes the effect of gravitation on the shape of space and the flow of time. But for more than four decades after its publication, the theory remained largely a curiosity for scientists; however accurate it seemed, Einstein’s mathematical code—represented by six interlocking equations—was one of the most difficult to crack in all of science. That is, until a twenty-nine-year-old Cambridge graduate solved the great riddle in 1963. Roy Kerr’s solution emerged coincidentally with the discovery of black holes that same year and provided fertile testing ground—at long last—for general relativity. Today, scientists routinely cite the Kerr solution, but even among specialists, few know the story of how Kerr cracked Einstein’s code. Fulvio Melia here offers an eyewitness account of the events leading up to Kerr’s great discovery. Cracking the Einstein Code vividly describes how luminaries such as Karl Schwarzschild, David Hilbert, and Emmy Noether set the stage for the Kerr solution; how Kerr came to make his breakthrough; and how scientists such as Roger Penrose, Kip Thorne, and Stephen Hawking used the accomplishment to refine and expand modern astronomy and physics. Today more than 300 million supermassive black holes are suspected of anchoring their host galaxies across the cosmos, and the Kerr solution is what astronomers and astrophysicists use to describe much of their behavior. By unmasking the history behind the search for a real world solution to Einstein’s field equations, Melia offers a first-hand account of an important but untold story. Sometimes dramatic, often exhilarating, but always attuned to the human element, Cracking the Einstein Code is ultimately a showcase of how important science gets done.
Black Holes

Black Holes

Clifford A. Pickover

BLACK HOLES A TRAVELER'S GUIDE Clifford Pickover's inventive and entertaining excursion beyond the curves of space and time. "I've enjoyed Clifford Pickover's earlier books . . . now he has ventured into the exploration of black holes. All would-be tourists are strongly advised to read his traveler's guide." -Arthur C. Clarke. "Many books have been written about black holes, but none surpass this one in arousing emotions of awe and wonder towards the mysterious structure of the universe." -Martin Gardner. "Bucky Fuller thought big. Arthur C. Clarke thinks big, but Cliff Pickover outdoes them both." -Wired. "The book is fun, zany, in-your-face, and refreshingly addictive." -Times Higher Education Supplement.
Einstein's Unfinished Symphony

Einstein's Unfinished Symphony

Marcia Bartusiak

Traces ongoing efforts by scientific observers throughout the world to detect gravitational waves, infinitesimal quakes that could significantly expand on what is known about the universe today. Reprint.
Gravity's Engines

Gravity's Engines

Caleb Scharf

One of The Barnes and Noble Review Editors' Picks: Best Nonfiction of 2012 Selected by The Christian Science Monitor as one of "21 smart nonfiction titles we think you'll enjoy this summer" Selected by The New Scientist as one of 10 books to look out for in 2012 We've long understood black holes to be the points at which the universe as we know it comes to an end. Often billions of times more massive than the Sun, they lurk in the inner sanctum of almost every galaxy of stars in the universe. They're mysterious chasms so destructive and unforgiving that not even light can escape their deadly wrath. Recent research, however, has led to a cascade of new discoveries that have revealed an entirely different side to black holes. As the astrophysicist Caleb Scharf reveals in Gravity's Engines, these chasms in space-time don't just vacuum up everything that comes near them; they also spit out huge beams and clouds of matter. Black holes blow bubbles. With clarity and keen intellect, Scharf masterfully explains how these bubbles profoundly rearrange the cosmos around them. Engaging with our deepest questions about the universe, he takes us on an intimate journey through the endlessly colorful place we call our galaxy and reminds us that the Milky Way sits in a special place in the cosmic zoo—a "sweet spot" of properties. Is it coincidental that we find ourselves here at this place and time? Could there be a deeper connection between the nature of black holes and their role in the universe and the phenomenon of life? We are, after all, made of the stuff of stars.